Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Cell Infect Microbiol ; 13: 1155938, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-20234677

RESUMEN

Background: The SARS-CoV-2 virus has caused unprecedented mortality since its emergence in late 2019. The continuous evolution of the viral genome through the concerted action of mutational forces has produced distinct variants that became dominant, challenging human immunity and vaccine development. Aim and methods: In this work, through an integrative genomic approach, we describe the molecular transition of SARS-CoV-2 by analyzing the viral whole genome sequences from 50 critical COVID-19 patients recruited during the first year of the pandemic in Mexico City. Results: Our results revealed differential levels of the evolutionary forces across the genome and specific mutational processes that have shaped the first two epidemiological waves of the pandemic in Mexico. Through phylogenetic analyses, we observed a genomic transition in the circulating SARS-CoV-2 genomes from several lineages prevalent in the first wave to a dominance of the B.1.1.519 variant (defined by T478K, P681H, and T732A mutations in the spike protein) in the second wave. Conclusion: This work contributes to a better understanding of the evolutionary dynamics and selective pressures that act at the genomic level, the prediction of more accurate variants of clinical significance, and a better comprehension of the molecular mechanisms driving the evolution of SARS-CoV-2 to improve vaccine and drug development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias , México/epidemiología , Filogenia , Genoma Viral , Mutación
2.
J Interferon Cytokine Res ; 42(8): 430-443, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2278024

RESUMEN

Interferon-induced transmembrane (IFITM) proteins mediate protection against enveloped viruses by blocking membrane fusion at endosomes. IFITM1 and IFITM3 are crucial for protection against influenza, and various single nucleotide polymorphisms altering their function have been linked to disease susceptibility. However, bulk IFITM1 and IFITM3 mRNA expression dynamics and their correlation with clinical outcomes have not been extensively addressed in patients with respiratory infections. In this study, we evaluated the expression of IFITM1 and IFITM3 in peripheral leukocytes from healthy controls and individuals with severe pandemic influenza A(H1N1) or coronavirus disease 2019 (COVID-19). Comparisons between participants grouped according to their clinical characteristics, underlying disease, and outcomes showed that the downregulation of IFITM1 was a distinctive characteristic of severe pandemic influenza A(H1N1) that correlated with outcomes, including mortality. Conversely, increased IFITM3 expression was a common feature of severe pandemic influenza A(H1N1) and COVID-19. Using a high-dose murine model of infection, we confirmed not only the downregulation of IFITM1 but also of IFITM3 in the lungs of mice with severe influenza, as opposed to humans. Analyses in the comparative cohort also indicate the possible participation of IFITM3 in COVID-19. Our results add to the evidence supporting a protective function of IFITM proteins against viral respiratory infections in humans.


Asunto(s)
Antígenos de Diferenciación , COVID-19 , Gripe Humana , Proteínas de la Membrana , Proteínas de Unión al ARN , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , COVID-19/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/genética , Leucocitos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
J Interferon Cytokine Res ; 42(8): 352-368, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2277657

RESUMEN

The costs of coronavirus disease 2019 (COVID-19) are devastating. With millions of deaths worldwide, specific serological biomarkers, antiviral agents, and novel therapies are urgently required to reduce the disease burden. For these purposes, a profound understanding of the pathobiology of COVID-19 is mandatory. Notably, the study of immunity against other respiratory infections has generated reference knowledge to comprehend the paradox of the COVID-19 pathogenesis. Past studies point to a complex interplay between cytokines and other factors mediating wound healing and extracellular matrix (ECM) remodeling that results in exacerbated inflammation, tissue injury, severe manifestations, and a sequela of respiratory infections. This review provides an overview of the immunological process elicited after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Also, we analyzed available data about the participation of matrix metalloproteinases (MMPs) and transforming growth factor-beta (TGF-ß) in immune responses of the lungs. Furthermore, we discuss their possible implications in severe COVID-19 and sequela, including pulmonary fibrosis, and remark on the potential of these molecules as biomarkers for diagnosis, prognosis, and treatment of convalescent COVID-19 patients. Our review provides a theoretical framework for future research aimed to discover molecular hallmarks that, combined with clinical features, could serve as therapeutic targets and reliable biomarkers of the different clinical forms of COVID-19, including convalescence.


Asunto(s)
COVID-19 , Metaloproteinasas de la Matriz , Factor de Crecimiento Transformador beta , Biomarcadores , COVID-19/inmunología , Costo de Enfermedad , Humanos , Metaloproteinasas de la Matriz/inmunología , SARS-CoV-2 , Factor de Crecimiento Transformador beta/inmunología
4.
J Infect Dis ; 224(1): 21-30, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1379462

RESUMEN

The differentiation between influenza and coronavirus disease 2019 (COVID-19) could constitute a diagnostic challenge during the ongoing winter owing to their clinical similitude. Thus, novel biomarkers are required to enable making this distinction. Here, we evaluated whether the surfactant protein D (SP-D), a collectin produced at the alveolar epithelium with known immune properties, was useful to differentiate pandemic influenza A(H1N1) from COVID-19 in critically ill patients. Our results revealed high serum SP-D levels in patients with severe pandemic influenza but not those with COVID-19. This finding was validated in a separate cohort of mechanically ventilated patients with COVID-19 who also showed low plasma SP-D levels. However, plasma SP-D levels did not distinguish seasonal influenza from COVID-19 in mild-to-moderate disease. Finally, we found that high serum SP-D levels were associated with death and renal failure among severe pandemic influenza cases. Thus, our studies have identified SP-D as a unique biomarker expressed during severe pandemic influenza but not COVID-19.


Asunto(s)
COVID-19/genética , Expresión Génica , Interacciones Huésped-Patógeno/genética , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/genética , Proteína D Asociada a Surfactante Pulmonar/genética , SARS-CoV-2 , Adulto , Anciano , Biomarcadores , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/virología , Coinfección , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Gripe Humana/diagnóstico , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Pronóstico , Proteína D Asociada a Surfactante Pulmonar/sangre , Índice de Severidad de la Enfermedad , Evaluación de Síntomas , Adulto Joven
6.
Front Immunol ; 12: 593595, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1229174

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is a global health threat with the potential to cause severe disease manifestations in the lungs. Although COVID-19 has been extensively characterized clinically, the factors distinguishing SARS-CoV-2 from other respiratory viruses are unknown. Here, we compared the clinical, histopathological, and immunological characteristics of patients with COVID-19 and pandemic influenza A(H1N1). We observed a higher frequency of respiratory symptoms, increased tissue injury markers, and a histological pattern of alveolar pneumonia in pandemic influenza A(H1N1) patients. Conversely, dry cough, gastrointestinal symptoms and interstitial lung pathology were observed in COVID-19 cases. Pandemic influenza A(H1N1) was characterized by higher levels of IL-1RA, TNF-α, CCL3, G-CSF, APRIL, sTNF-R1, sTNF-R2, sCD30, and sCD163. Meanwhile, COVID-19 displayed an immune profile distinguished by increased Th1 (IL-12, IFN-γ) and Th2 (IL-4, IL-5, IL-10, IL-13) cytokine levels, along with IL-1ß, IL-6, CCL11, VEGF, TWEAK, TSLP, MMP-1, and MMP-3. Our data suggest that SARS-CoV-2 induces a dysbalanced polyfunctional inflammatory response that is different from the immune response against pandemic influenza A(H1N1). Furthermore, we demonstrated the diagnostic potential of some clinical and immune factors to differentiate both diseases. These findings might be relevant for the ongoing and future influenza seasons in the Northern Hemisphere, which are historically unique due to their convergence with the COVID-19 pandemic.


Asunto(s)
COVID-19 , Citocinas , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Metaloproteinasa 1 de la Matriz , Metaloproteinasa 3 de la Matriz , Receptores Inmunológicos , Adulto , Anciano , COVID-19/sangre , COVID-19/epidemiología , COVID-19/inmunología , Citocinas/sangre , Citocinas/inmunología , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/sangre , Gripe Humana/epidemiología , Gripe Humana/inmunología , Masculino , Metaloproteinasa 1 de la Matriz/sangre , Metaloproteinasa 1 de la Matriz/inmunología , Metaloproteinasa 3 de la Matriz/sangre , Metaloproteinasa 3 de la Matriz/inmunología , Persona de Mediana Edad , Estudios Prospectivos , Receptores Inmunológicos/sangre , Receptores Inmunológicos/inmunología , Células TH1/inmunología , Células Th2/inmunología
7.
Front Immunol ; 12: 633297, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1133913

RESUMEN

The C-X-C motif chemokine ligand 17 (CXCL17) is chemotactic for myeloid cells, exhibits bactericidal activity, and exerts anti-viral functions. This chemokine is constitutively expressed in the respiratory tract, suggesting a role in lung defenses. However, little is known about the participation of CXCL17 against relevant respiratory pathogens in humans. Here, we evaluated the serum levels and lung tissue expression pattern of CXCL17 in a cohort of patients with severe pandemic influenza A(H1N1) from Mexico City. Peripheral blood samples obtained on admission and seven days after hospitalization were processed for determinations of serum CXCL17 levels by enzyme-linked immunosorbent assay (ELISA). The expression of CXCL17 was assessed by immunohistochemistry (IHQ) in lung autopsy specimens from patients that succumbed to the disease. Serum CXCL17 levels were also analyzed in two additional comparative cohorts of coronavirus disease 2019 (COVID-19) and pulmonary tuberculosis (TB) patients. Additionally, the expression of CXCL17 was tested in lung autopsy specimens from COVID-19 patients. A total of 122 patients were enrolled in the study, from which 68 had pandemic influenza A(H1N1), 24 had COVID-19, and 30 with PTB. CXCL17 was detected in post-mortem lung specimens from patients that died of pandemic influenza A(H1N1) and COVID-19. Interestingly, serum levels of CXCL17 were increased only in patients with pandemic influenza A(H1N1), but not COVID-19 and PTB. CXCL17 not only differentiated pandemic influenza A(H1N1) from other respiratory infections but showed prognostic value for influenza-associated mortality and renal failure in machine-learning algorithms and regression analyses. Using cell culture assays, we also identified that human alveolar A549 cells and peripheral blood monocyte-derived macrophages increase their CXCL17 production capacity after influenza A(H1N1) pdm09 virus infection. Our results for the first time demonstrate an induction of CXCL17 specifically during pandemic influenza A(H1N1), but not COVID-19 and PTB in humans. These findings could be of great utility to differentiate influenza and COVID-19 and to predict poor prognosis specially at settings of high incidence of pandemic A(H1N1). Future studies on the role of CXCL17 not only in severe pandemic influenza, but also in seasonal influenza, COVID-19, and PTB are required to validate our results.


Asunto(s)
Biomarcadores/metabolismo , Quimiocinas CXC/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/diagnóstico , Pulmón/metabolismo , Mycobacterium tuberculosis/fisiología , SARS-CoV-2/fisiología , Adulto , Anciano , COVID-19/diagnóstico , COVID-19/mortalidad , Quimiocinas CXC/genética , Quimiocinas CXC/inmunología , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Gripe Humana/mortalidad , Pulmón/patología , Masculino , México , Persona de Mediana Edad , Pandemias , Evaluación del Resultado de la Atención al Paciente , Pronóstico , Análisis de Supervivencia , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/mortalidad , Adulto Joven
8.
Commun Biol ; 4(1): 290, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1118820

RESUMEN

SARS-CoV-2 virus has infected more than 92 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Using a rhesus macaque model of SARS-CoV-2 infection, we have characterized the transcriptional signatures induced in the lungs of juvenile and old macaques following infection. Genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated, as also seen in lungs of macaques with tuberculosis. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. Together, our transcriptomic studies have delineated disease pathways that improve our understanding of the immunopathogenesis of COVID-19.


Asunto(s)
COVID-19/inmunología , Degranulación de la Célula , Interferones/fisiología , Neutrófilos/fisiología , SARS-CoV-2 , Anciano , Animales , Antígenos CD36/fisiología , COVID-19/etiología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Pulmón/metabolismo , Macaca mulatta , Masculino , Persona de Mediana Edad , Receptores Notch/fisiología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Factor A de Crecimiento Endotelial Vascular/sangre , Factor A de Crecimiento Endotelial Vascular/fisiología
9.
bioRxiv ; 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: covidwho-721082

RESUMEN

The novel virus SARS-CoV-2 has infected more than 14 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Limited information on the underlying immune mechanisms that drive disease or protection during COVID-19 severely hamper development of therapeutics and vaccines. Thus, the establishment of relevant animal models that mimic the pathobiology of the disease is urgent. Rhesus macaques infected with SARS-CoV-2 exhibit disease pathobiology similar to human COVID-19, thus serving as a relevant animal model. In the current study, we have characterized the transcriptional signatures induced in the lungs of juvenile and old rhesus macaques following SARS-CoV-2 infection. We show that genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. We demonstrate that Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. In contrast, pathways involving VEGF are downregulated in lungs of old infected macaques. Using samples from humans with SARS-CoV-2 infection and COVID-19, we validate a subset of our findings. Finally, neutrophil degranulation, innate immune system and IFN gamma signaling pathways are upregulated in both tuberculosis and COVID-19, two pulmonary diseases where neutrophils are associated with increased severity. Together, our transcriptomic studies have delineated disease pathways to improve our understanding of the immunopathogenesis of COVID-19 to facilitate the design of new therapeutics for COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA